

Chanda Cement works

Presented by – Naresh Macherla (Head Production)

Content:

- About us
- Sp. Energy Consumption in last 3 Years
- Benchmarking for Cement Manufacturing Excellence
- Energy Saving Projects implemented in Last 3 Years
- Innovative Projects Detail
- Utilization of Renewable Energy Sources
- Waste Utilization and Management
- GHG Emission Reduction and Action Plan
- EMS System and Learnings from Others
- Our Net Zero Commitment
- Moment of Glory

Presence of Adani Cement Across India

Plant Location details

- Located in Ghugus Tehsil, Chandrapur district.
- Chandrapur 27 km / Nagpur 165 km.
- Chanda plant got commissioned in 1970.
- Plant upgraded in 2010 to 2.318 mtpa Clinker &
 - 3.80 mtpa cement.

- Chanda has two Limestone mines, both located in Yuvatmal district.
 - Sindola Mines -17 km from the plant
 - Govari Mines -25 km from the plant
- Captive power plant located in the factory.
 - \bullet Turbines 1 X 15 MW and 1 X 25 MW

Chanda is the first cement plant set-up in the Maharashtra state.

"Quarry to Lorry" – Plant major equipment

Clinkering Capacity : 2.31 mtpa

Cement Capacity : 3.80 mtpa

Clinker Silos

- Defunct Silo of 1 lakh ton capacity
- New Clinker Silo of 1,00,000 MT storage capacity

- Existing: 4 wagon and 6 truck loading machines
- New: 12 wagon and 5 truck loading machines

- Sindola (23 mio ton, 0.6 mtpa CtO, Stripping Ratio 1:1)
- Govari (26 mio ton, 2.89 mtpa CtO, Stripping Ratio 1:2)

- Limestone Crusher 1200 TPH impact crusher, L&T make
- OLBC 8.5 km from Sindola to Plant

- 1 VRM 560 TPH Pfeiffer make
- 4.0% residue on 212 micron

RM Silo

- Silo, FLS Make Blending efficiency
- 10:1

- 1 X 18,000 tons CF

Kiln

- 1 Dry process Kiln 6 stage double string PH with ILC
- 7,000 TPD FLS make • 5.5 m dia. X 86 m long
- Cooler: FLS 5X6 crossbar upgraded with ABC inlet

Coal Mill

- 75 TPH VRM FLS make
- 3 rollers

Cement Mill

- Existing: 2 Mills X 75 TPH each, ACC Babcock with VRPM
- 1 VRM X 260 TPH (PPC), Loesch make

Cement Silos

- Existing: 5 X2400 MT each • New: 2 X 12000 MT each
- Total Capacity = 36,000 MT

- Existing: 3 X 120 TPH each EEL Make, Single discharge
- New: 3 X 240 TPH each EEL Make, double discharge

Specific Thermal Energy Consumption in last 3 years

Despite of increasing TSR% we are continuously decreasing STEC consumption

adani

SEEC Consumption in last 3 years (Upto Clinker)

Despite of increasing TSR% we are slightly decreasing SEEC consumption

adani

SEEC Consumption in last 3 years (Grinding & Overall)

Information on Competitors, National and Global Benchmark

as per CII Benchmarking Details

Energy Benchr	narking	
Parameters	Total SEEC (kWh/T cem)	STEC (kCal/kg Clk)
ACC Cements (Unit : CD)	71.36	739
Competitor 1	69.30	735
Competitor 2	71.40	746
Competitor 3	71.65	758
National Benchmark	56.15	676
Target for 2024-25	70.00	730
Target for 2030	60.00	700

Energy Saving Projects Implemented in last 3 Years

Year	No. of Energy Saving Projects	Investment (INR Million)	Electrical Saving (Million kWh)	Thermal Savings (Million Kcal)	Total Saving (INR Million)	Impact on SEC/SHC (Electrical kWh/MT cement or Kcal/kg cement)
FY 2021-22	9	3.0	6.84	3,600	37	2.53/1.2
FY 2022-23	7	26.7	1.87	4,485	48.7	0.88/1.7
FY 2023-24	9	102.7	1.98	31,061	69.34	0.57/8.9

List of Encon Projects implemented in FY 2021-22

Sr No.	Title of Project	Annual Electrical Saving (kWh)	Annual Electrical Cost Saving (Rs Million)	Annual Thermal Saving (Million Kcal)	Annual Thermal Saving (Rs Million)	Total Annual Savings (Rs Million)	Investment Made (Rs Million)	Payback (Months)
1	Optimization of Raw mill DP through HLC	26,40,000	10.56	0	0	10.56	0	0
2	Replacement of T12 lamps with LED lamps	96,360	0.4	0	0	0.4	2.4	72
3	Reduction of dam ring height to improve mill output	13,20,000	5.28	0	0	5.28	0	0
4	Change in delivery setting pressure of compressors	3,37,833	1.35	0	0	1.35	0	0
5	Optimization of kiln, PC firing through Kiln Master HLC	-	0	3600	9.72	9.72	0	0
6	Reduction of Raw mill fan power by increasing GRR loading	13,20,000	5.28	0	0	5.28	0	0
7	Removal of Cement mill 3 fan damper	4,62,000	1.8	0	0	1.8	0.15	1
8	Reduction of fan power by arresting false air across coal mill circuit	4,75,200	1.9	0	0	1.9	0	0
9	Removal of dampers of separator vent fan - Cement mill 1 & 2	1,91,400	0.77	0	0	0.77	0	0

List of Encon Projects implemented in FY 2022-23

Sr No.	Title of Project	Annual Electrical Saving (kWh)	Annual Electrical Cost Saving (Rs Million)	Annual Thermal Saving (Million Kcal)	Annual Thermal Saving (Rs Million)	Total Annual Savings (Rs Million)	Investm ent Made (Rs Million)	Payback (Months)
1	Installation of downcomer duct water spray system	5,45,530	2.7	0	0	2.7	10.5	46
2	Rerouting of compressor air lines to reduce power consumption	6,27,904	3.76	0	0	3.76	0.3	0.2
3	Replacement of duoflex burner with pyrojet burner	-	0	1559	13.25	13.25	15	13.5
4	Removal of RABH fan inlet damper	2,67,191	1.6	0	0	1.6	0	0
5	Replacement of Kiln seal Inlet and Kiln Outlet lamella Seal	-	0	2090	17.77	17.77	0.4	0.27
6	Installation of Martin make air blasters in cooler inlet to improve efficiency	-	0	836	7	7	0.5	0.86
7	Improvement of separator seal with felt in cement mill 3	4,36,909	2.62	0	0	2.62	0	0

List of Encon Projects implemented in FY 2023-24

Sr No.	Title of Project	Annual Electrical Saving (kWh)	Annual Electrical Cost Saving (Rs Million)	Annual Thermal Saving (Million Kcal)	Annual Thermal Saving (Rs Million)	Total Annual Savings (Rs Million)	Investmen t Made (Rs Million)	Payback (Months)
1	Installation of ABC inlet in Kiln Cooler	-	0	20849	40.8	40.8	100	29.4
2	Removal of damper from cooler ESP fan	3,50,000	1.99	0	0	1.99	0.2	1.21
3	Removal of coal mill bag house fan damper	3,00,000	1.71	0	0	1.71	0.2	1.4
4	Reduction of false air across Raw mill circuit to < 15%	7,02,000	4.02	0	0	4.02	0.1	0.3
5	Application of heat resistance paint on kiln shell	-	0	3312	5.63	5.63	0.8	1.71
6	Installation of bolted type spikes for stripping wheel in AFR feeding	-	0	2400	4.08	4.08	0.2	0.59
7	PID loop for AFR weigh feeder Vs Chain conveyor to reduce fluctuations	-	0	2400	4.08	4.08	0.2	0.59
8	Usage of THERMACT PC additive to improve burnability of Coal	-	0	2100	3.57	3.57	1	3.36
9	Improvement of Raw mill output to > 550 TPH	6,30,000	3.46	0	0	3.46	0	0

List of Encon Projects planned in FY 2024-25

Sr No.	Title of Project	Annual Electrica I Saving (Million kWh)	Annual Therm al Saving (Million Kcal)	Annual Energy Saving (ToE)	Investment Ma de (Rs in Million)	Payback (Mo nths)
1	Optimization of Raw mill Hydraulic pressure to improve mill output to 560 TPH	0.546	-	46.95	0.1	2
2	Installation of HLC in Raw mill	1.12	-	93.4	3	24
3	Reduction of Raw mill cyclone DP through CFD	0.4	-	34.3	2	12
4	Installation of HLC in Kiln	1	7500	835.58	3	26
5	Installation of new Kiln Inlet analyzer	-	3000	300	5	15
6	Installation of shredder to reduce AFR size	-	7500	749.5	400	48
7	reduction of coal crusher output size	0.4	-	34.3	-	-
8	Installation of VFD in unloading compressor	0.4	-	34.3	1	5.5
9	Cement mill 3 Baghouse fan impeller replacement	0.6	-	51.6	10	4

List of Encon Projects planned in FY 2024-25

Sr No.	Title of Project	Annual Electric al Saving (Milli on kWh)	Annual Therm al Saving (Million Kcal)	Annual Energ y Saving (ToE)	Investment Ma de (Rs in Million)	Payback (Mo nths)
10	Installation of mechanical conveying system in place of pneumatic system for transferring cement to old silos from new cement mill	3	-	154.7	40	29
11	Installation of High efficient low pressure compressor for Flyash unloading in old mills	0.4	-	34.3	3.5	19
12	Installation of 3 S Roller in CM3	3.77	-	324.5	270	24
13	Replacement of AFR double flap damper	0	3	0.377	0.5	2
14	Installation of additional Raw coal hopper to maintain coal ash as per Raw mix	0	4500	449.7	10	12.5

Innovative project -1: Installed PCPF block for burner

- Frequent failure of Burner castable (3 months) due to high wear rate at the tip area.
- Installed PCPF block for burner for the first time in AAA to improve burner reliability
- PCPF block up 1.8 m length from burner tip during Feb'24 Shutdown PCPF block area observed intact after 1.5 month of operation.

After Can be replicated in all the Cement plants

Innovative project -2: Usage of Coal Catalyst

Actions implemented – Feeding coal catalyst in kiln and PC in the ratio of 1 KG for 10 MT coal

Coal, in pulverized form, is fed into the combustion chamber of the boiler. This coal contains structural (inherent) moisture to the extent of 2 to 8%. In the combustion zone, this structural moisture is converted to superheated steam, which leaves the chimney resulting into sensible and latent heat loss.

The proprietary catalyst in THERMACT facilitates reaction between inherent moisture (H2O) and Carbon to form syngas, which is a mixture of Carbon Monoxide and Hydrogen.

 $C + H_2O \longrightarrow (CO + H_2)^{\uparrow}$

This combustible Syngas (CO & H2) undergoes subsequent oxidation to generate heat. The Hydrogen present in Syngas combines with Carbon of coal to produce Methane, which on oxidation generates heat thereby helping in improved combustion.

Hence, due to THERMACT, the heat loss due to inherent moisture in coal is not only minimized but also utilized to generate combustible by-products in the combustion chamber. As a result, there is a increase in the heat generation in the system which can be utilized productively.

Can be replicated in all the Cement and power plants

Innovative project -3: Installation of cooler ABC inlet

		<u>Befo</u>	re		
	ŀ	leat Bala	nce		
Heat Ir	nput		Heat Lo	SS	
Heat energy enter into the cooler	Kcal/Kg clink	383	Heat through cooler vent	Kcal/Kg clink	109
Sensible heat of cooling air	Kcal/Kg clink	16	Heat through clinker out	Kcal/Kg clink	32
Sensible heat of cooling water	Kcal/Kg clink	1.02	Radiation losses fro cooler	Kcal/Kg clink	6
			Evaporation of water	Kcal/Kg clink	29
Total		400			167
		_	1		

Cooler efficiency %

<u>After</u> Heat Balance

57

	<u>.</u>	icat Dala	lice		
Heat Ir	nput		Heat Lo	SS	
Heat energy enter into the cooler	Kcal/Kg clink	383	Heat through cooler vent	Kcal/Kg clink	109
Sensible heat of cooling air	Kcal/Kg clink	17	Heat through clinker out	Kcal/Kg clink	23
Sensible heat of cooling water	Kcal/Kg clink	0.89	Radiation losses fro cooler	Kcal/Kg clink	6
			Evaporation of water	Kcal/Kg clink	23
Total		401			155
			1		

67

%

Cooler efficiency

Can be replicated in plants which are suffering with frequent Snowman

Energy Saving projects initiated at Chanda Cement Works

1. Installation of Water spray system in downcomer duct

- Down comer duct water spray @ 10m3/hr in each string, to reduce PH O/L temperature to the level of 230 °C
- Consistent AFR consumption and Kiln feed during Raw mill and Coal mill stoppages as gas temperature is maintained.
- Better control of Preheater fan and RABH Inlet Temperatures to avoid tripping of Calciner firing resulting in kiln disturbances.

2. Synchronization of Walking floor with CBC to avoid fluctuation in AFR Feed & too loop control high CO in the system

- PID loop Optimization Chain conveyor Speed Vs Weigh Feeder TPH
- Optimization of Walkie Floor forward stroke (26 Sec) divided into three intervals with delay time of 7 sec to optimize fluctuations.

AFR Feed Fluctuations

Walkie Floor Stroke Optimization

BEFORE

AFTER

Mixing of AFR – RDF:Biomass

Actions taken:

- •Separate Loadall for mixing of RDF & Biomass
- Mix prepared separately

Advantages:

- Enhanced flow ability of material
- Reduction of Jamming issues, Thus eliminating CO high issue.
- Reduction of variations in Cl in AFR feed
- Minimised moisture

adani

4. To control high CO in the system Stripping wheel spikes repaired adani

Actions implemented - To control High variation of CO in system

AFR circuit Striping wheel spikes repaired

Standard deviation of CO peaks reduced from 58 to 16 after repairing stripping wheel after walking floor discharge to make uniform bed of the AF material.

Before

5. Kiln Shell painting

adani Cement

Reduction of Kiln Shell Radiation

- To reduce Shell radiation Heat resistance paint applied on Kiln (ARREST MASTER 3001 L)
- Achieved savings of ~ 2.76 Kcals/Kg clinker

	Kiln Sh	ell Radi	ation Be	efore Pain	iting
Ambient temperature	35	оC			
Clinker production	315	tph			
				Ileat	lleat

Distance	Kiln dia.	Kiin length	Total C.S.	ivg. Temp	Heat transfer cofficient (Radiation)	Heat transfer cofficient (Convection)	Radiation		Distance	Kiln dia.	Kiln I
mtr	mtr	mtr	m ²	°C			Kcal/kg cli.	İ	mtr	mtr	r
20-25	5.5	5	86.3938	349	22.8380	6.1781	2.1448		20-25	5.5	
25-30	5.5	5	86.3938	368	24.4594	6.1137	2.3962		25-30	5.5	
30-35	5.5	5	86.3938	386	26.1214	6.0503	2.6616		30-35	5.5	
35-40	5.5	5	86.3938	372	24.8519	6.0985	2.4582	1	35-40	5.5	
40-45	5.5	5	86.3938	363	24.0168	6.1311	2.3268	1	40-45	5.5	
45-50	5.5	5	86.3938	364	24.1164	6.1271	2.3424	1	45-50	5.5	
50-55	5.5	5	86.3938	299	18.9176	6.3416	1.5684		50-55	5.5	
55-60	5.5	5	86.3938	302	19.1369	6.3323	1.5994		55-60	5.5	
60-65	5.5	5	86.3938	308	19.6505	6.3106	1.6727	1	60-65	5.5	
65-70	5.5	5	86.3938	302	19.1859	6.3302	1.6064	1	65-70	5.5	
70-75	5.5	5	86.3938	288	18.1526	6.3739	1.4613	1	70-75	5.5	
75-80	5.5	5	86.3938	273	17.1510	6.4156	1.3237]	75-80	5.5	
80-86	5.5	6	103.6726	245	15.2971	6.4878	1.2924]	80-86	5.5	
							24.85	Kcal/kg cli			
Saving	in STEC						2.76	kCal/k	zclk		

Distance	Kiln dia.	Kiln lengtl	Total C.S.	lvg. Temp	Heat transfer cofficient (Radiation)	Heat transfer cofficient (Convection)	Radiation	
mtr	mtr	mtr	m ²	°C			Kcal/kg cli.	
20-25	5.5	5	86.3938	310	19.7610	6.3059	1.6886	
25-30	5.5	5	86.3938	326	21.0008	6.2537	1.8690	
30-35	5.5	5	86.3938	355	23.3720	6.1567	2.2268	
35-40	5.5	5	86.3938	361	23.8715	6.1368	2.3042	
40-45	5.5	5	86.3938	355	23.3826	6.1562	2.2284	
45-50	5.5	5	86.3938	345	22.5473	6.1899	2.1005	
50-55	5.5	5	86.3938	284	17.8704	6.3858	1.4222	
55-60	5.5	5	86.3938	289	18.2368	6.3704	1.4730	
60-65	5.5	5	86.3938	295	18.6356	6.3535	1.5287	
65-70	5.5	5	86.3938	285	17.9520	6.3823	1.4335	
70-75	5.5	5	86.3938	277	17.4038	6.4052	1.3581	
75-80	5.5	5	86.3938	265	16.5608	6.4395	1.2440	
80-86	5.5	6	103.6726	237	14.8120	6.5046	1.2170	
							22.09	6

Actions implemented - Limestone feed size reduced in stacking pile.

BEFORE

•Feed size has wide variations, stones up to 250 x 150 x 100 mm

SIEVE ANALYSIS OF LIMESTONE REQUIREMENT 101.03 100.00

SIEVE ANALYSIS OF LIMESTONE Sample Collected from BC6 Belt on dated 21/11/2022 at 10:15 hrs.

Limestone pile wise Sieve analysis

Limestone 65 mm sieve size reduced 5.89 %

2

з

4 5

6

8

9

10

11

80

65

60

40.0

31.5

25.0

20.0

16.0

10.0

-10.0

SIEVE ANALYSIS OF LIMESTONE Sample Collected from BC6 Belt on dated 12/10/2023 at 10:00 hrs. SIEVE ANALYSIS OF LIMESTONE REQUIREMENT Sieve Sample Test Sr.No Ind. % Cumm. % Size(MM) wt.(KG) data Norms 0.00 0.00 100 0.00 0.00 0%

2.07

4.99

2.60

5.42

6.70

6.33

7.63

7.49

13.78

43.09

•Lime stone feed size maintain below 65 mm.

2.57

6.18

3.10

6.72

8.30

7.85

9.46

9.28

17.09

53.41

were observed in the Limestone pile.

Sr.No	Sieve Size(MM)	Sample wt.(KG)	Ind. %	Cumm. %	Test data	Norms
1	100	2.15	2.13	2.13	2.13	0%
2	80	3.92	3.88	6.01		
3	65	7.01	6.94	12.95	12.95	10 %
4	50	6.02	5.96	18.91		
5	40.0	7.10	7.03	25.94		
6	31.5	7.80	7.72	33.65		
7	25.0	7.19	7.12	40.77	84.02	00.%
8	20.0	8.62	8.53	49.30	04.52	30 %
9	16.0	8.58	8.49	57.80		
10	10.0	6.96	6.89	64.69]	
11	-10.0	35.68	35.31	100.00		

2.07

7.06

9.56

14.98

21.68

28.01

35.64

43.13

56.91

100.00

7.06

92.94

10%

90%

7. Raw mill hydraulic pressure increased from 180 to 185 Bar

Trial time process parameters by hourly basis

Date	ТРН	Hyd	Hyd	Cylinder	I/L	O/L Temp	I/L Draft	O/L	MD KW	Mill DP	Fan KW	Sep	Sep	Sep	Sep Vibn	Rej. Elev	Reject	MD Vibn	Silo Elev	Silo Elev	LSF_AVG	R212_A	Mill
Time		Operating	Lifting	Posn	Temp			Draft				Speed	Load	Vibn 1	2	Load	Belt		M1 Load	M2 Load		VG	Water
	t/h	bar	bar	MM	ï½°C	ï½°C	mbar	mmWC	kW	mbar	kW	1/min	A	mv/g	mm/s	kW	t/h	mm/s	A	Α	#	%	m3/hr
23.06.2023 04:00	527	177	5	133	148.44	92.45	-12.84	-812	4620.07	38.52	3348.04	64.41	193.32	11.95	3.59	2.35	33.77	0.58	158.49	153.95			10.24
23.06.2023 05:00	542	177	5	144	165.01	94.28	-13.32	-858.96	4879.09	42.41	3299.24	64.41	202.24	9.47	2.81	2.59	51.57	0.5	165.83	161.51	101.86	3.6	10.22
23.06.2023 06:00	543	177	5	148	157.49	93.37	-12.91	-863.42	4937.87	43.2	3298.07	64.4	199.24	9.37	3.03	2.66	60.69	0.5	155.32	150.53			10.26
23.06.2023 07:00	536	177	5	143	154.97	94.39	-13.24	-838.31	4810.25	40.78	3302.73	64.39	193	9.74	3.33	2.54	50.3	0.56	153	148.73	69.96	2.5	10.27
23.06.2023 08:00	537	177	5	153	147.52	89.88	-12.35	-861.94	5046.37	42.96	3297	64.18	199.83	8.45	2.42	2.64	60.89	0.48	165.24	160.75	113.83	3.2	10.3
23.06.2023 09:00	538	177	5	145	151.74	89.22	-13.5	-854.33	4890.15	41.96	3323.78	63.29	189.86	9.55	3.18	2.56	53.4	0.51	167.9	163.31	104.05	2.27	10.32
	Raw mill Trial 185 Bar on 23.06.2023 @ 10:30 AM																						
23.06.2023 11:00	563	182	5	147	172.57	92.77	-13.67	-883.5	5025.37	44.02	3297.5	61.96	188.92	9.8	3.42	2.65	63.43	0.52	171.7	168.11	102.85	2.87	10.36
23.06.2023 12:00	556	182	5	149	181.68	93.54	-13.08	-888.33	5066.72	44.86	3280.25	62.33	192.82	9.3	3.06	2.68	66.38	0.51	169.85	166.06			10.37
23.06.2023 13:00	555	183	5	144	180.17	91.97	-14.03	-862.51	4943.45	43.02	3313.04	62.33	186.88	9.97	3.51	2.58	57.23	0.54	166.23	162.23	102.66	2.48	10.37
23.06.2023 14:00	557	182	5	143	170.45	90.79	-13.37	-858.92	4944.47	43.49	3324.93	62.33	188.98	10.61	3.49	2.58	56.83	0.54	158.66	154.78			10.37
23.06.2023 15:00	556	182	5	145	163.75	89.1	-12.91	-858.91	4970.66	43.17	3333.57	62.33	189.18	10.41	3.52	2.58	56.74	0.53	160.78	156.49	68.81	2.83	10.39
23.06.2023 16:00	563	183	5	143	169.55	91.3	-13.59	-857.35	4943.44	42.99	3325.42	62.57	190.44	10.57	3.48	2.53	53.3	0.55	166.78	162.84	53.64	4	10.4
23.06.2023 17:00	563	176	65	171	145.01	92.91	-10.51	-482.58	5088.22	21.88	3301.21	55.42	156.13	5.22	2.04	1.41	30.83	0.26	122.29	119.09	103.36	4.13	5.07
23.06.2023 19:00	503	180	57	181	133.53	86.29	-13.9	-665.72	4150.96	31.04	3203.34	56.84	164.72	7.39	2.3	2.12	40.47	0.36	131.49	127.64	99.58	2.25	6.26
23.06.2023 20:00	552	182	5	146	170.57	91.24	-14.15	-879.08	5002.15	43.28	3324.58	63.31	193.77	10.22	3.09	2.67	57.59	0.53	166.41	161.52	108.85	4	10.25
23.06.2023 21:00	556	182	5	147	179.06	94.2	-14.31	-890.44	5032.4	44.29	3304.78	63.3	195.39	10.38	3.43	2.7	64.1	0.54	160.87	156.7	103.27	3.3	10.21
23.06.2023 22:00	562	186	5	142	175.96	92.73	-15.38	-887.64	5006.33	42.95	3325.15	62.63	192.87	11.36	3.61	2.66	58.92	0.57	161.79	157.53			10.24

Modification of mill inlet hot air duct

Installation of air blastersInstallation of rod gate inside hot air duct

Waste Utilization & Management

- AFR material stored in a covered shed with proper ventilation
- AFR shredder project (~Rs 41 Cr.) is ongoing, expected to complete by March 2025, after which we can reach the TSR value up-to 25.5%.

	Waste as fuel	Quantity (MT)	GCV (kCal/Kg)	TSR (%)
FY22	RDF/ Biomass	39,537	2485	5.8
FY23		96,375	2364	14.3
FY24		1,48,985	2058	17.5
Target FY25		2,15,370	2232	25.5

Saving of natural resources

	Waste as Raw material	Quantity (MT)	Replaced material	Waste as percentage of raw material
FY22		16853		0.5
FY23	Red mud	19293	Iron Ore	0.7
FY24		21396		0.7
FY22		0		0
FY23	Wet Slag	9980	Bauxite	0.35
FY24		6167		0.2
FY23	Limestone Sludge	1034		0.04

Saving of natural resources Coal Saving due to AFR usage : 71591 MT

IMS Certificates

Udaaan

Our plant is IMS certified for Environment, Energy and Quality.

Reduction in GHG

Traditional Fuel Replaced

64677 MT

Chanda has taken CO2 emission intensity reduction measures such as

- Clinker factor reduction
- Improving Thermal Substitution Rate (TSR)
- Installing Waste Heat Recovery System (WHRS)
- Reducing Thermal & Electrical Energy intensities
- Increasing renewable energy consumption
- Adoption of new technologies

SD 2030

SUSTAINABILITY PILLARS	CLIMATE AND ENERGY	CIRCULAR ECONOMY		PEOPLE AND COMMUNITY
Lead Metrics	CO ₂ emitted (kg/t cementitious material)	Waste re-used (Million tonnes)	Water Positivity Index (No. of times)	No. of new beneficiaries (Million new beneficiaries)
Objectives	Reduction of CO ₂ emissions	Enhanced reuse of waste derived resources	Creating a positive impact on environment	Creation of shared value
2020 Actual	493	9.3	1.1"	0.4
2030 Target	400*	30	5	0.9

Technology Adoption

Technology	Remarks
Cooler hot air recirculation, for increasing waste heat recovery (WHR) power generation.	Commissioned WHRS with Cooler gases, PH commissioning in progress
IoT – Industry 4.0	Implemented WBI app, BoG, TIS, HLC under digital transformation drive
Chlorine bypass system for increasing alternative fuel usage.	Study completed. Under progress
Electric vehicles for raw materials/ products	Trial done with electric vehicle for cement loading

- Platinum award in 1st Half Yearly Udaaan Championship for increasing TSR from 9.3 to 20%.
- **3**rd National Sustainability Awards on Cement and RMC by QCFI for Excellence in AFR.
- IconSWM-CE award for "Highest TSR & Best Volumes of AFR" at the 13TH International Conference on Sustainable
 Waste Management and Circular Economy for the year 2023.
- IBM Awards : Chanda received 2nd Prize for Environmental Monitoring, Publicity and Propaganda and 3rd Prize for Reclamation BIS has honored "Outstanding performance in Quality" to ACC Chanda for achieving zero failures in Cement Quality in the last two years.
- Chanda Cement Works received Best performer award in AFR excellence category in 1st International Cement conclave organised by QCFI Madurai and Ahmedabad Chapter.

(Naresh Macherla, Swaroop Gudimitia, Arbind Chaudary, Tukaram Khamankar, Jojo Augustine, Hemraj Dahiya, Jyoti Chandel & Rup Jyoti)

Platinum Champion – Chanda plant

Doubling AFR consumption from 9.3% to 20%

To combat the increasing cost of coal and clinker product, there was a need to increase the AFR consumption with the existing infrastructure of ready-to-feed material from the plant. Chanda team set the goal of doubling the AFR consumption from 9.3% to 20% and also significantly reducing the carbon footprint

- Product Mix : 80% RDF (Refuse Derived Fuel) + 20% biomass
- Continuous monitoring of RDF and communicating to concern for avoiding large size and high moisture and proper mixing of RDF and biomass for optimum feeding to maximize the consumption
- Modification of calciner feeding area to avoid jamming and PID loop for chain conveyor speed with weigh feeder TPH and optimization of walkie floor stroke length

- Walkie floor material leakage minimization
- Modification of AFR feed chute opening at calciner
- PID loop optimization

Led to a saving of Rs. 15.4 Cr per annum

adani

Chanda Plant awarded for "Highest TSR & Best Volumes of AFR" at the 13TH International Conference on Sustainable Waste Management and Circular Economy for the year 2023.

IBM Awards for Chanda Cement

Chanda Cement Works received 2nd Prize for Environmental Monitoring, Publicity and Propaganda and 3rd Prize for Reclamation.

Reward from BIS to Chanda Cement Works

BIS has honored "Outstanding performance in Quality" to ACC Chanda for achieving zero failures in Cement Quality in the last two years.

- 1) 1st Plant in Adani group for highest AFR consumption more than 600 TPD (With Co- Processing facility)
- 2) First plant to achieve 21% TSR in Adani group.

Cement

THANK YOU

